国家公务员考试招考信息报考指导阅读资料考试题库面授课程网络课程图书教材申论批改1对1公开课返回首页

2019国家公务员考试行测备考:“韩信点兵”问题破解大法

推荐:国家公务员考试信息2017-12-12 13:14:35 | 中公教育 丁凡

编辑推荐国家公务员考试QQ交流群:点击加入

“韩信点兵”的故事家喻户晓。据传:秦朝末年,楚汉相争,有一次韩信带1500名将士与楚军大战,楚军不敌,败退回营,而汉军也有四百多伤亡,只是具体伤亡多少一时还不知道。在汉军整顿回营的过程中,楚军骑兵来袭,于是韩信急速点兵迎敌。不一会儿,副官报告共有1035人,他还不放心,于是他命令士兵3人一列,结果多出2名;接着他命令士兵5人一列,结果多出3名;再命令士兵7人一列,结果又多出2名。韩信马上向将士们宣布:值日副官计算错了,我军共有1073名勇士,敌人不足500,我们居高临下,以众击寡,一定能打败敌人。汉军本来就信服自己的统帅,这一来更相信韩信是“神仙下凡”,于是士气大振,交战不久,楚军便大败而逃。

在三次列队后,韩信是如何算出了士兵的人数?这其中又蕴含着怎样的道理呢?我们把“韩信点兵”故事中涉及到数学关系提炼出来,得到如下表述:有一个介于1000-1100之间的四位数,它除以3余数是2,除以5余数是3,除以7余数是2,那么这个数是几?此类问题被称之为“剩余问题”,在国家公务员行测考试中也时常出现。

那么此类问题该如何破解呢?核心思想是:先找到符合要求的数的通项公式,再根据数值的范围确定具体取值。具体操作方法:同余特性。下面中公教育专家将按照由易到难、从特殊到一般的顺序,和大家分享“同余特性”在“剩余问题”求解过程中的操作步骤。

 

试题解析 笔试成绩 面试名单 资格审核 面试时间 调剂公告 面试题库 面试专题

1.余同加余

若多个除式的被除数相同,余数也相同,那么这个被除数的值等于多个除数的最小公倍数加余数。如:X÷3余1,X÷5余1,那么X=15k+1。

例1.三位数的自然数P满足:除以7余2,除以6余2,除以5也余2,则符合条件的自然数P有:( )

A.2个 B.3个 C.4个 D.5个

【答案】C。

【中公解析】3个除式的被除数相同,均为自然数P,余数都是2,而除数7、6、5的最小公倍数是210,根据余同加余可得,P=210k+2。再结合题意,P是三位数,有100≤210k+2≤999,k可取值1、2、3、4,所以符合条件的P有4个,答案选C。

2.和同加和

若多个除式的被除数相同,除数和余数的和也相同,那么这个被除数的值等于多个除数的最小公倍数加“除数和余数的和”。如:X÷3余2,X÷4余1,那么X=12k+5。

例2.有一箱水蜜桃二百多个,每堆10个多3枚,每堆12个则余1个。则这箱水蜜桃有多少个?( )

A.243个 B.253个 C.263个 D. 273个

【答案】B。

【中公解析】两个除式的被除数相同,均为水蜜桃的个数,记为X,两式“除数加余数的和”均为13,而除数10、12的最小公倍数是60,根据和同加和可得,X=60k+13。再结合题意,可知200<60k+13<300,k只能取4,所以X=60×4+13=253,答案选B。

3.差同减差

若两个除式的被除数相同,除数和余数的差也相同,那么这个被除数的值等于两个除数的最小公倍数减去“除数和余数的差”。如:X÷3余2,X÷4余3,那么X=12k-1。

例3.有一个小于200的正整数m,它除以11余8,除以13余10,则2m-80=( )

A.158 B.200 C.226 D. 244

【答案】B。

【中公解析】两个除式的被除数相同,均为m,两式“除数与余数的差”均为3,而除数11、13的最小公倍数是143,根据差同减差可得,m=143k-3。由题可知0

 

点击查看2018国家公务员面试备考专题,更多招考信息请访问国家公务员考试频道

责任编辑(张迪)

历年真题
考试提醒
重点推荐
视频专区
推荐课程
最新活动
我要提问在线问答
问: 地方税务局没写是参公,那就是公...
提问人:花开彼岸1993|03-27已解决
问: 函授本科7月拿毕业证,今年能以本...
提问人:米米的晴天|03-27已解决
问: 应届往届身份怎么确定
提问人:世辉网络|03-27已解决
问: 签了假三方 档案在人才市场 毕...
提问人:54jingtian|03-27已解决